Open TH questions : Nucleon Structure

Daniel de Florian Dpto. de Física - FCEyN Universidad de Buenos Aires

Workshop on Electron-Ion Colliders

Milos, September 27 2009

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Several aspects of ep/eA colliders

- Precision Physics (QCD)
- Nucleon Structure
- Nuclear Structure

Precision Physics(QCD)

In last 10 years QCD in the precision era : combination of Exp. and TH effort

Why TH effort?

Fixed order expansion $\sigma = \sigma^{(LO)} + \alpha_s \sigma^{(NLO)} + \alpha_s^2 \sigma^{(NNLO)} + \dots$ $\alpha_s (Q^2 = 10) \sim 0.2$ Corrections are usually sizable

Renormalization and Factorization introduce dependence on unphysical scales: cancels only to all orders!

QCD calculations produce quantitative predictions from NLO

Standard: NLOautomatic' and many legs

NNLO available for some processes, more comingery difficult but doable!

Resummation of dominant logs up to NNessential in some kinematical regimes

Precise measurements and calculations allow extraction of pdfs

NNLO splitting functionsMoch, Vermaseren, Vogt

Nucleon Structure

Parton distributions

Probability of finding a parton "a" in the nucleon carrying a momentum fraction "x"

Non-perturbative but UNIVERSAL (factorization)

Scale dependence given by DGLAP equations

i.Main ingredient in the parton model to compute crosssections

 $d\sigma = \sum_{ab} \int dx_a \int dx_b f_a(x_a, Q^2) f_b(x_b, Q^2) \times \hat{\sigma}_{ab}(x_a, x_b, Q^2, \alpha_s(Q^2))$

ii.Direct information on the non-perturbative structure of the nucleon

$$\int_0^1 dx \, x^{n-1} f_a(x, Q^2) \sim < P |\mathcal{O}_a^{(n)}| P >$$

codify some information about wave function **P** >

n=1 : "number" of partons
$$\int_0^1 dx \left[u(x,Q^2) - \bar{u}(x,Q^2) \right] \sim 2 \qquad \int_0^1 dx \left[d(x,Q^2) - \bar{d}(x,Q^2) \right] \sim 1$$

n=2: "momentum" of partons

$$\sum_{i} \int_{0}^{1} dx \ q_{i}(x,Q^{2}) \sim \int_{0}^{1} dx \ g(x,Q^{2})$$

n=1 polarized : "spin" of partons

$$\Delta f_j(x,Q^2)\equiv f_j^+(x,Q^2)-f_j^-(x,Q^2)$$

Line of attack
(=) extract nuclean helicity structure
$\Delta f = \langle e \rangle - \langle e \rangle \frac{1}{2} e^{2} a_{ij} a_{j} x \rangle \frac{1}{2} \rangle$
(3) Learn electric errors of terms of queries and gluons $ \underbrace{\begin{array}{c} \begin{array}{c} \bullet \end{array}}_{2} = \langle \mathcal{O}, \frac{1}{2} \mathcal{D}, \mathcal{O}, \frac{1}{2} \rangle $

$$\sum_{i} \int_0^1 dx \; \Delta q_i(x,Q^2) \ll 1$$

more information about wave function in 'less inclusive' distributions: GPD/TMD Global Fits: Several groups MSTW and CTEQ

State of the art in the unpolarized case: MSTW2008Martin, Stirling, Thorne, Watt

- NNLO accuracy considerably reduce TH uncertainty
- pdfs uncertainties
- a,uncertainties (new!)

QCD in the precision era : pdfs + partonic cross-sections (NLO/NNLO) Nuclear structure fundamental for precise QCD

sections

Not negligible uncertainties for some distributions at extreme kinematics relevant for nucleon structure/QCD

large uncertainties at large x

'Low' energy/High Luminosity ep collider can help a lot!

Not negligible uncertainties for some distributions at extreme kinematics relevant for nucleon structure/QCD

large uncertainties at small x Saturation of the gluon density at small x? Not seen at HERA

Where is **BFKL**?

Precision QCD at small x LHeC

Spin Structure : Polarized PDFs

$$\Delta f_i(x, Q^2) \equiv f_i^{\uparrow}(x, Q^2) - f_i^{\downarrow}(x, Q^2)$$

$$\Delta \Sigma = \sum_i \int_0^1 \Delta q_i(x, Q^2) \, dx \qquad \Delta G = \int_0^1 \Delta g(x, Q^2) \, dx$$

$$\frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_G = \frac{1}{2}$$
Spin sum rule

Exp. data: DIS only fixed target

$$g_1(x,Q^2) = \frac{1}{2} \sum_q e_q^2 \left[\Delta q(x,Q^2) + \Delta \bar{q}(x,Q^2) \right]$$

not enough to determine gluon

line of attack

~ 100 different sets of pdf over the last deca

Global analysis of DIS, SIDIS and RHIC (pion and jet)

DSSV (deF, Sassot, Stratmann, Vogelsar

PDFs + uncertainties

Polarized Quarks

Polarized Sea

Moments $Q^2 = 10 \, \text{GeV}^2$

▲ SIDIS requires positive (HERMES) but first moment negative (DIS)

Polarized Sea

Polarized Gluons

Moments $Q^2 = 10 \, \text{GeV}^2$

estimates (DNS/GRSV) ruled out

Gluon distribution at small x : DIS and evolution

 $rac{d\,g_1}{d\log(Q^2)}\,\propto\,-\Delta g(x,Q^2)$ at small x

collider Play the role of HERA for spin dependent

Small x allow to check sum rules (Bjorken) with much better accuracy $\int_0^1 dx \, g_1^{ep-en}(x, Q^2)$ from 10% to 1-2% ?

Vithout polarized ep collider : spin 'crisis' has NO solutior

SPIN SUM RULES

Chen, Lu, Sun, Wang, Goldmar Ji Jaffe, Manohar $J_g \neq L_g + \Delta G$ $L_q \neq L'_q$ $\Delta\Sigma$ $\Delta\Sigma$ L_q'' $\Delta \Sigma''$ L_{g} L_q L''_a L'_a $\Delta G''$ ΔG Gauge invariant Partonic interpretation Gauge invariant physical interpretation local operator only in Lattice and GPDs light cone gauge **Contains interactions** related to new pdfs? $rac{1}{2}\Delta\Sigma+\Delta G+L_q+L_g=rac{1}{2}$ $rac{1}{2}\Delta\Sigma+L_q'+J_g=rac{1}{2}$ $rac{1}{2}\Delta\Sigma''+\Delta G''+L_q''+L_g''=rac{1}{2}$

~ 0.12 small? must be (-0.084) sizable Possible scenario : most of spin by OAM ? TH work needed to relate different approaches and find how to measure OAM

Experimental activity triggers TH!

RHIC can provide more information about gluons

500 GeV to smaller x (x>0.01)

New pp observables can give complementary information

Prompt photons Heavy quarks

More exclusive observables Dijets (Star)
 Jet + pion (Star)
 pion + photon (Phenix)

More exclusive allows to perform a more detailed selection Cuts to enhance some partonic channel Plot data in term of other variables (enhance sensitivity)

Transversity

measurement of quark transversity not easy: odd chiralit in pp: small (DY) or SSA

Need SIDIS + Collins fragmentation (transverse momentum FFs from e+e-) azimuthal asymmetries in $e p^{\uparrow} \rightarrow e \pi X$

Study Transverse spin sum rule

 $\delta q(x) =$

More powerful description of nucleon structure Generalized Parton Distributions

- X: average quark momentum frac
- ξ : "skewing parameter" = $x_1 x_2$
- *t*: 4-momentum transfer²

Off-forward distributions: require exclusive measurements

Fourier transform of impact parameter PDFs

$$\int d^2 \mathbf{\Delta}_\perp \, \mathrm{e}^{-i \mathbf{\Delta}_\perp \cdot \mathbf{b}_\perp} \; H_q(x,\xi=0,-\mathbf{\Delta}_\perp^2) \;\;=\;\; q(x,b_\perp)$$

quark with fraction x and transverse distance b from center

A

transverse profile of the nucleon p

Burkardt; Ji

GPDs can provide a transverse profile of the nucleon

Burkardt; Ji

Position space distribution of partons : Tomographic images of nucleon

Related to total quark angular momentum Ji measurable in DVCS computable in lattice

$$J_q = \frac{1}{2} \lim_{t \to 0} \int dx \, x \, \left[H_q(x,\xi,t) \, + \, E_q(x,\xi,t) \right] = \, \frac{1}{2} \Delta q \, + \, L_q$$

But still measuring OAM not that clear in a model independent way GPDs can open a new window on the nucleon structure

Collinear Parton Model (unpolarized) We know quite a lot $\left| egin{array}{c|c|c|c|c|c|c|} dPS_{all\,partons\,but\,1} & \mathbf{P} \end{array}
ight
angle \ q(x,Q^2)\,,\,\,g(x,Q^2) \end{array}$

Collinear Parton Model (polarized) We know a bit about long. pol.

 $dPS_{all\,partons\,but\,1} \mid {f P} \left.
ight
angle \ \Delta q(x,Q^2) \,, \; \Delta g(x,Q^2)$

Beyond collinear approximation /fully inclusive we know very little!

GPDs

Nuclear PDFs

Large uncertainties in the gluon ratio

Several models predict saturation in hadowing : need small x and large Q

Only EIC can look at that region

What about pA / AA collisions?

At medium x complementary measurements eA/pA

R is 'background' for new state of matter (QGP)

Nuclear PDFs

Can they be understood together (artifact of analysis?) or true effect (difference of propagation of photon and W through dense nuclear matter?) Assumed to be equal for pdf extraction! strange distribution affected? $[\nu_{\mu}N \rightarrow \mu^{+}\mu^{-}X]$ NuTeV anomaly insin² θ_{W} ?

EIC can scan over different nuclei with photon and W exchange

Summary

New insight on nucleon structure

✓ Unpolarized PDFs : OK for LHC but some kinematical regions uncovered small x : Saturation? large x : nucleon models

✓ Polarization : where is the spin of the proton? $\frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_G = \frac{1}{2}$

Gluonic contribution requires small x : only possible at high energy ep collider $\int_0^1 \Delta g(x, Q^2) dx$

Without polarized ep collider : spin 'crisis' has NO solution

✓ Generalized Parton Distributions : Powerful description of nucleon structure

Tomographic images of nucleon Orbital Angular Momentum ?

✓ eA collisions : nuclear modified pdfs

QCD in the precision era

large uncertainties at present complementary measurements with pA/AA "Background" for QGP

